Math 25
Fall 2017
Lecture 2

Cont. with functions

$$
\begin{aligned}
& f(x)=b \text { constant function } \\
& f(x)=5, \quad g(x)=-2, \quad h(x)=0
\end{aligned}
$$

$f(x)=m x+b \quad$ Linear function
Slope m

$$
y=m x+b
$$

y-Int $(0, b)$

$$
f(x)=\frac{2}{3} x+4, g(x)=\frac{2}{3} x-2, h(x)=\frac{-3}{2} x
$$

How to find eqn of a line

1) No slope, undefined slope \rightarrow vertical line

$$
x=a
$$

2) Zero slope, $m=0 \rightarrow$ Horizontal line

$$
y=b
$$

3) otherwise \rightarrow use point-slope formula

Recall $m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$

$$
y-y_{1}=m\left(x-x_{1}\right)
$$

we always prefer final ans in

$$
y=m x+b
$$

find equation of a line that contains $(-3,2)$ and $(0,4)$.

1) find slope $m=\frac{y_{1}-y_{2}}{x_{1}-x_{2}}=\frac{2-4}{-3-0}=\frac{2}{3}$
2) use point-slope $y-y_{1}=m\left(x-x_{1}\right)$

find eqn of a line that contains $(-3,4)$ and $(2,0)$. Ans. in slope-Int form.

Draw.

$$
\begin{aligned}
& y-y_{1}=m\left(x-x_{1}\right) \\
& y-0=\frac{-4}{5}(x-2) \\
& y=\frac{-4}{5} x+\frac{8}{5} \\
& \rightarrow f(x)=\frac{-4}{5} x+\frac{8}{5} \\
& m=\frac{-4}{5} \\
& \quad y-\operatorname{In} t\left(0, \frac{8}{5}\right)
\end{aligned}
$$

Graph $x=4, f(x)=-3$, and $g(x)=3 x+2$.
Shade the region that is bounded by all three lines.

Graph the top half of the circle centered at $(0,2)$ with radius 3 and $f(x)=2$ for $x \geq 3$.

Increasing $(-3,0)$
Decreasing $(0,3)$ constant $(3, \infty)$
 Inc., Dec., or constant use interval notation with $($,$) .$

Piece-wise defined function

Graph

$$
\begin{aligned}
& f(x)=\left\{\begin{array}{lll}
-x^{2} & \text { for } & x<2 \\
3 & \text { for } & -2 \leq x<4 \\
-\frac{2}{5} x+6 & \text { for } & x \geq 4
\end{array}\right. \\
& f(x)=-x^{2} \\
& \text { Increasing }(-\infty,-2) \\
& \text { Constant }(-2,4) \\
& \text { Decreasing }(4, \infty)
\end{aligned}
$$

$$
x^{2}+y^{2}=16
$$

Center (0,0)
Radius 4
Draw
Domain $[-4,4]$

Range $[-4,4]$
This graph is symmetric with respect to Y-axis, x-axis, and the origin.

Test for Symmetry

1) Replace x with $-x$, Simplify.

If we get same equation, Graph will be symmetrix with respect to

$$
y=x^{2}+4
$$

$$
\begin{aligned}
& y=(-x)^{2}+4 \\
& y=x^{2}+4
\end{aligned}
$$

Same eau.
Y-axis symmetry
2) repacle Y with $-y$, simplify If we get same eon, we have x-axis symmetry.
 symmetry.
3) If we replace x with $-x$, and y with $-y$, and simplify
we have symmetry to the origin if we get same eqn.

$$
\begin{gathered}
x y=4 \\
(-x)(-y)=4 \\
x y=40
\end{gathered} \quad \begin{aligned}
& \\
& \text { origin } \\
& \text { symmetry }
\end{aligned}
$$

Check for Symmetry

$$
\begin{aligned}
& x^{3}+|y|=4 \quad \begin{array}{l}
\text { y-axis symmetry } \\
(-x)^{3}+|y|=4 \\
(-x)^{3}+|-y|=4 \\
-x^{3}+|y|=4
\end{array} \quad\left\{\begin{array}{l}
-x^{3}+|y|=4 \\
\text { no symmetry }
\end{array}\right. \\
& \text { No symmetry. } \quad\left\{\begin{array}{l}
x \text {-axis symmetry } \\
x^{3}+|-y|=4 \\
x^{3}+|y|=4
\end{array}\right.
\end{aligned}
$$

we have symmetry

Even, odd, or neither functions:
If $f(-x)=f(x) \rightarrow f(x)$ is an even function
\rightarrow Symmetric with respect to y-axis.
If $f(-x)=-f(x) \rightarrow f(x)$ is an odd functia
\rightarrow symmetric with respect to the origin.
otherwise it is neither.

$$
\begin{aligned}
& f(x)=x^{4}+x^{2}+4 \\
& f(-x)=(-x)^{4}+(-x)^{2}+4=f(-x)=x^{4}+x^{2}+4 \\
& f(-x)=f(x) \rightarrow \text { even function }
\end{aligned}
$$

Y-axis symmetry

$$
\begin{aligned}
& f(x)=\frac{1}{x} \quad f(-x)=\frac{1}{-x}=\frac{-1}{x}=-\frac{1}{x}=-f(x) \\
& f(-x)=-f(x) \rightarrow \text { odd function } \\
& \rightarrow \text { origin sym. }
\end{aligned}
$$

$$
\begin{aligned}
& f(x)=x^{3}-|x|+1 \\
& \begin{aligned}
f(-x) & =(-x)^{3}-|-x|+1 \\
& =-x^{3}-|x|+1 \\
f(-x) & \neq f(x) \rightarrow \text { Not even } \\
f(-x) & \neq-f(x) \rightarrow \text { Not odd }
\end{aligned}
\end{aligned}
$$

So $f(x)$ is neither.
oNo function is ever
Symmetric with respect to x-axis

Transformations of functions $h, k>0$ $f(x-h)$ moves $f(x)$ to the right h units.

$$
f(x+h) " \quad=\quad=\text { left } h \text { ". }
$$

$f(x)+k$ moves $f(x)$ up k units $f(x)-k$ " down k units.

$f(-x) \rightarrow$ Reflection about Y-axis
$-f(x) \rightarrow$ Reflection about x-axis.
If $a>1 \quad f(a x)$ compress t horizontally
If $0<a<1 \quad f(a x)$ stretch horizontally

$$
x^{2}+y^{2}=9
$$

Graph $(x-3)^{2}+y^{2}=9, x^{2}+(y+2)^{2}=9$, and $(x-3)^{2}+(y+2)^{2}=9$

$$
y=x
$$

$$
y-2=x
$$

$$
y=x+2
$$

$$
\begin{aligned}
y_{2}+3 & =f(x) \\
y_{2} & =f(x) a^{3}
\end{aligned}
$$

$$
f(x)=\sqrt{x}
$$

Graph $f(-x), f(x-4), f(x)+2$

$$
f(x)=|x| \xrightarrow{\infty}
$$

Geraph

$$
f(x)=x^{2}
$$

Graph

1) take care of x
2) take save of reflection
3) take cave of y

Graph of $f(x)=x^{2}-4 x$ is given below

Ch. 5 system of linear equations

$$
\left\{\begin{array}{l}
3 x-y=5 \\
y=2 x-8
\end{array}\right.
$$

System is consistent.

Equations are independent.

Subs. method

$$
3 x-(2 x-8=5
$$

$$
3 x-2 x+8=5
$$

$$
\begin{gathered}
x=-3 \quad y=2(-3)-8 \\
y=-14
\end{gathered}
$$

final ans $(-3,-14)$

Solve

$$
\begin{cases}6 x+2 y=7 & 6 x+2(-3 x+1)=7 \\ y=-3 x+1 & 6 x-6 x+2=7\end{cases}
$$

System \rightarrow inconsistent. $2=7$ false

Eons are independent No Solution

$$
\begin{array}{cc}
3\left\{\begin{array}{l}
3 x+2 y=7 \\
2 x-3 y=15 \\
4 x
\end{array}\right. & \hookrightarrow\left\{\begin{array}{l}
9 x+6 y=21 \\
8 x-6 y=30
\end{array}\right. \\
\begin{array}{rl}
3(3)+2 y=7 \\
9+2 y=7 & y=-1
\end{array} & \begin{array}{l}
\text { Elimination method } \\
17 x
\end{array} \\
& (3,-1)
\end{array}
$$

$$
\begin{aligned}
& \text { Solve } \\
& \begin{cases}3 x-2 y+z=2 \\
5 x & +y-2 z=1 \\
4 x & -3 y+3 z=7\end{cases} \\
& 2\left\{\begin{array} { l }
{ 3 x - 2 y + z = 2 } \\
{ 5 x + y - 2 z = 1 }
\end{array} \Rightarrow \left\{\begin{array}{l}
6 x-4 y+2 z=4 \\
\frac{5 x+y-2 z=1}{11 x-3 y=5}
\end{array}\right.\right. \\
& -3\left\{\begin{array} { l }
{ 3 x - 2 y + z = 2 } \\
{ 4 x - 3 y + 3 z = 7 }
\end{array} \Rightarrow \left\{\begin{array}{l}
-9 x+6 y-3 z=-6 \\
4 x-3 y+3 z=7
\end{array}\right.\right.
\end{aligned}
$$

$$
\left.\begin{array}{l}
\text { Solve } \begin{array}{rr}
\begin{array}{r}
11 x-3 y=5 \\
-5 x+3 y=1
\end{array} & \begin{array}{r}
11(1)-3 y=5 \\
-3 y=-6
\end{array} \\
6 x=6 & y=2
\end{array} \\
x=1
\end{array} \begin{array}{c}
3 x-2 y+z=2
\end{array}\right\}
$$

In triangle $A B C$,
The sum of Angles A and B is 20° less than angle C.
Angle B is 10° more than twice angle A.

$$
\begin{array}{ll}
\text { find all three angles. } \\
\begin{cases}A+B+C=180 \\
-A+B-C=-20\end{cases} \\
-2 A+B=10
\end{array} \quad\left\{\begin{array}{ll}
A+B=C-20 \\
B=2 A+10 \\
A+B+C=180^{\circ} \\
-2 A+2 B=160
\end{array}\right\}\left\{\begin{array}{l}
A+B=80 \\
-1-2 A+B=10
\end{array}\right.
$$

$$
\begin{aligned}
& \left\{\begin{array}{l}
A+B=80 \\
2 A-B=-10 \\
3 A=70
\end{array}\right. \\
& \frac{70}{3}+B=80 \\
& L C D=3 \\
& 70+3 B=240 \\
& A=\frac{70^{\circ}}{3} \\
& 3 B=170 \\
& B=\frac{170^{\circ}}{3} \\
& A+B+C=180 \\
& \begin{array}{c}
\frac{70}{3}+\frac{170}{3}+c=180 \\
\frac{240}{3}+c=180
\end{array} \qquad \begin{array}{r}
80+C=180 \\
C=100^{\circ} \\
\end{array}
\end{aligned}
$$

Alan has 20 Coins. Dimes, Nickels, Quarters only. Total value is $\$ 1.95$.
\# of nickels is the same as total \# of quarters and dimes. How many of each? $\begin{aligned} & D \rightarrow \text { Dimes } \\ & N \rightarrow \text { Nickels } \\ & Q \rightarrow \text { Quarters }\end{aligned} \quad \div 5\left\{\begin{array}{l}D+N+Q=20 \\ 10 D+5 N+25 Q=195 \\ N=D+Q\end{array}\right.$

$$
\left\{\begin{array}{l}
D+N+Q=20 \longrightarrow 2 N=20 \quad N=10 \\
2 D+N+5 Q=39 \\
-D+N-Q=0
\end{array}\right.
$$

Looking Ahead

$$
\begin{array}{ll}
(A+B)^{0}=1 & A \dot{\varepsilon} B \neq 0 \\
(A+B)^{1}=A+B & A \neq-B \\
(A+B)^{2}=A^{2}+2 A B+B^{2} \\
(A+B)^{3}=A^{3}+3 A^{2} B+3 A B^{2}+B^{3} \\
(A+B)^{4}=A^{4}+4 A^{3} B+6 A^{2} B^{2}+4 A B^{3}+B^{4} \\
(A+B)^{5}=A^{5}+5 A^{4} B+10 A^{3} B^{2}+10 A^{2} B^{3}+5 A B^{4}+B^{5}
\end{array}
$$

